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SUMMARY

Assuming a constant circulation, rigid, trailing
wake and using a lift deficiency function to represent the
unsteady aerodynamic effects, various methods of calculating
the airloads on a helicopter rctor in steady, forward flight
were developed for the purpose of achieving: (a) faster
solution times for a given level of accuracy and'(b) a more
accurate representation of the lifting surface/vortex inter-
action for the case where the blade passes close to the vortex
line generated by a previous blade. Since most of the solufion
time is required to calculate the induced velocities due to
the trailing wake, various approximate methods of.calculating
the induced velocities due to a rigid, ske&ed helix were
developed. Within the limits of accuracy availabie from the
rigid wake model either the scolution of Reference (2), which
represents the skewed helix with a series of infinite straight
lines placed tangent to the helix whenever the helix passes
under a blade, or the finite straight line solution, which
represents the helix with a series of straight line segments
subtending equal A¢ (change in azimuth angle), using A# = 30°-
40° were found to give the fastest results. If the model is
refined to include, for example, a nonrigid wake, then the
finite straight line soluticn with a 4A¢ of approximately
15° should be used. The use of a conventional two dimensional
lifting surface theory was tried for the lifting surface/
vortex interaction case and little improvement resulted. It

is recommended that the use cf more sophisticated lifting

surface theories be investigated for this case.
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SYMBOLS
coefficients of chordwise induced velocity distribution.
nondimensicnal induced velocity.

location of an element of vorticity in the trailing

wake.

point cn the blade at which induced velocity is cal-

culated.

rotor radius.

tip path plane.

velocity perpendicular to blade in TPP.

r

w*/ (Z;FE—— ) nondimensional induced velocity due to a

vortex segment.
induced velocity due to a vortex segment.
wn.

vectors from P7 to the ends of the vortex segment.
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zero th harmonic of flapping.
blade semichord.

—
a

-
- b.

nondimensional distance travelled by the rotor hub

between t and t .
1 K

h*/R.

perpendicular distance from P? to the vortex segment.

unit vectors in x, y, z directions (see Figure 24).

nondimensional radial distance from the rotor hub

to 2[ (part A) .

unit vector from P7 parallel to the induced velocity

at P, .
1

instant at which the element of vorticity at Ek was

trailed.

instant at which the induced velocity at PY is

calculated.

-
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chordwise induced velocity distribution.

x -~ components of the distances from P to the

‘z

ends of the vortex segment

chordwise coordinate (Section III).

y-components of distances from P, to the ends

of the vortex segment.

z-components of distances from P’l to the ends

of the vortex segiment.
circulation of trailing vortex (constant).
angular velocity of rotor, radians/sec.

angles between lines from P to the vortex segment

and the vortex segment (see Figure 23).

angles between the tangent to the spiral and the

two half-infinite vortices (see Figure 22).

angle between the induced velocity vector and the

perpendicular to the TPP.

angle between the blade which trailed the element

of vorticity and the blade on which induced velocity
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is being calculated, at any instant.

nondimensional radial distance from rotor hub to P,2 .

angle in the TPP between the local wind and the

perpendicular to the blade at point Py -
\

nondimensional mean inflow.

nondimensional n harmonics of inflow.

advance ratio (tip speed ratio).

¢-— 51/ - 6 (see Figure 14).

See Figure 16.

azimuth angle of blade trailing the element of

vorticity at point gl
) .

at the instant of trailing

(time tl

change in azimuth angle between the ends of a vortex

segment.

change ir. azimuth angle between the nearest point and
the other intersection of the half-infinite vortex

and the spiral (see Figure 16).
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yy = azimuth angle of the blade upon which 97 is located
at time t
1
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I. INTRODUCTION

This report discusses various methods for computing
blade airloads which were developed for the purpose of achieving:
(a) faster solution times and (b) a more accurate representation
of the lifting surface/vortex interaction for the case where the
blade passes close to the vortex line generated by a previous

blade.

The original solution for the induced velocity in forward
flight due to the trailing wake used numerical integration down
the spiral wake (Reference 1). This method required small inter-
val sizes (typically 7.5° in azimuth) and, hence, large amounts
of computer time to get accurate results. A solution was also
developed (Reference 2) where the spiral wake is replaced by a
set of infinite straight line vortices (for which the induced
velocity is known) placed tangent to the spiral at every point
where the spiral passes under a blade during the first turn of
the spiral. This solution is 20 times as fast as the numerical
integration solution; however, it is less accurate. Attempts
were then made to develop approximate solutions which would be
faster than the numerical integration solution and more accurate
than the approximate solution outlined above. Two such attempts

are described below.

Nearest Point

Instead of replacing the spiral trailing wake by
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infinite straight lines placed wherever the spiral passed under
a blade, it was decided to locate the infinite straight lines
wherever the distance from the point at which the induced velo-
city was being calculated to the spiral was a local minimum

or maximum (nearest points). As a further refinement, a double
infinite straight line solution was developed which used two
half infinite straight line vortices, both starting at the
nearest point and proceeding in nearly opposite directiocns to
infinity, intersecting the spiral at points S¢ away from
the nearest point on both sides (see Figure 1). An approximate
lifting surface theoxy was also developed based on the single
infinite straight line geometry. BAppendix A discusses these
solutions in more detail. Since these solutions proved to be
both slower and less accurate than the finite straight line

solution discussed below, they were discarded.

Finite Straight Line (FSL)

This solution replaces the spiral vortex trailing
wake with a series of straight line segments (see Figure 2).
Originally, it was intended to take shorter line segments in
the vicinity of nearest points and longer segments elsewhere.
Due to the considerable amount of computer time involved in
finding all the nearest points, however, a solution using a
constant A¢ (change in azimuth angle) per line segment proved

to be faster for equivalent accuracy.

Since FSL is approximately six times as fast as the
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numerical integration method for equivalent accuracy, it has been
adopted as the ncrmal method of calculating induced velocities.
It is even used for distorted wake cases where the trailing wake

is not a perfect spiral (skewed helix) but some more general

shape (Reference 3). Appendix B discusses FSL in more detail.

PRI



II. RESULTS AND CONCLUSIONS

Since the airloads on the H-34 rotor are available
from NASA Flight Test data (Reference 4), the airloads for a
test case (/u.= .2,7A==.025) have been calculated using in-
duced velocities calculated by the various approximate methods
outlined above. This gives a standard against which the various
methods can be compared. The airload caiculations use a two
vortex (one at the tip and one at the midspan point) constant
circulation trailing wake with the unsteady aerodynamic effects
accounted for by the appropriate lift-deficiency function
(Reference 2). Since the lower harmcnics of airload can be
calculated reasonably accurately by uniform inflow methods,
the airloads have been plotted with Oth, 1st, and 2nd harmonics
extracted to emphasize the higher harmonics which uniform in-
flow methods cannot calculate accurately. Figure 3, 4, 5, and
6 show the airloads at the 95% spanpoint ( vl = .95) as cal-
culated using the various approximate methods of calculating
induced velocity outlined above compared with the NASA Flight
Test data (Reference 4). For comparison the older infinite
straight line (Reference 2) and numerical integration (Reference
1) methods are shown in Figures 7 and 8(a) respectively. From
these figqures, it can be seen that although the various methods
do not agree completely with each other, there is little dif-
ference as far as the ability to predict the experimental data
is concerned. The finite straight line case (Figure 6) is shown

for an interval size ( A¢ ) of 15°. A case with A¢ = 7.5°

has been computed which gives essentially the same results, and,
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hence, convergence to the case A¢-—v—0 has occurred and
Figure 6 results in the correct solution. Since Figure 6 does
not show complete agreement with the test results, the two
trailing vortex, constant circulation, rigid wake model used

is inadequate, the ability of the finite straight line ap-
proximation to represent the model being better than the

ability of the model to represent the actual case. Therefore,
the model r:quires further refinement, for example, as has been
done in Reference 3 which discusses initial efforts to improve
the model by finding a better approximation to the wake geometry

than the assumption of a rigid wake.
It is, therefore, concluded that:-

1) If the two vortex, constant circulation, rigid wake
model is used, either the infinite straight line
approximation of Reference 2 (which is fastest) or
the finite straight line approximation with a large
interval size (A¢ = 30° - 20%) should be used since
the other methods discussed above are all slower and

yield no better agreement with the Flight Test data.

2) Future work should concentrate on developing the model
to include refinements such as a non-rigid wake geometry
and a varying strangth trailing wake. For these cases
with a refined model, the finite straight line aproxi-
mation with an interval size ( A¢ ) of approxi-

mately 15° should be used.




III. TWO DIMENSIONAL LIFTING SURFACE THEORY

When a vortex line passes close to a rotor blade, as
occurs on mostly lightly loaded rotors, the lifting line re-
presentation of the rotor blade becomes of questionable accuracy
due to the rapid variations of induced velocities over the

blade chord.

In the Appendix of Reference 1, a two-dimensional
lifting surface theory is developed. The induced velocity is

written as

o« h
) Z - cos Ne
A (X) = o

where x = b cos® is the chordwise coordinate. It is then shown

that

| = Tr/ob[ (n "i.'ﬂ)l?+dt(n+ HBE
YV (R+2A,) ]

The A's can be calculated by calculating the induced
velocity at a number of chordwise stations (typically 7) and
doing a chordwise harmonic analysis. This process takes ap-
proximately 7 times as long as the equivalent lifting line

procedure.

It was observed that lifting surface theory results
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only differed significantly from lifting line results in the
vicinity of sharp peaks in the airloads. A program was, there-
fore, developed which normally used lifting line theory. When-
ever the value of the integrand more than doubled or halved in
one integration interval (A¢) ) the program shifted to lifting
surface theory and when the integrand no longer doubled oxr
halved in one A¢ the program shifted back to lifting line
theory. This program was written using the method of calcu-
lating induced velocities by numerically integrating over the

wake which was developed in Reference 1.

Figure 3 shows the comparison of lifting line and
lifting surface airloads with harmonics below the third
eliminated compared with test data (Reference 4). This is for
a rigid wake, 4-blade, /u = .2, )\ = .025, and 'Y =.95 case.
There is some effect due to the lifting surface theory and a
marginal improvement in agreement with the experimental data.
It is not felt that this particular lifting surface theory is
worth pursuing further. Instead, work is proceeding on more

complete lifting surface theories (Reference 5).




APPENDIX A
NEAREST POINT

l. Finding Nearest Points

First it is necessary to find a set of local nearest
points for a rigid wake. Consider a case where one wishes to
calculate the induced velocity at time tY and at point P7
due to vorticity trailed at time t; from the nearest point P, -
Point P is at a radial distance 4?lerom the rotor hug on
a blade with azimuth angle %’at t , where R is the rotor
radius. Point 22 is at a radial distance _£R from the hub
on a blade with azimuth angle ¢ at tg . Let ¥ be the angle
between the M| blade and the £ Dblade at any instant (S = ‘//-—-96
when t.,I =t, ). Then t,7 - tl =%2,— (%+5— ¢ ) where Jg
is the angular velocity of the rotor (d}L/dt). Therefore, the
distance travelled by the rotor hub in time t7 -t is dR =
V(t"l - t, ), where V is the hub velocity. If /t: v/ R =

advance ratio: (see Figure 9)
a =/1( s —95 )

The condition for P,L to be a nearest point (or farthest point)

is that the line from P.,? te PL (of length a) be perpendicular
to the tangent to the spiral veortex at P’o. . Define @ as the
angle between the tangent to the spiral vortex at PL and a line
perpendicular to the J blade at Pl . From Figure 9 it follows
that:




Y(sin¢= ,esinqs - a sin (¢-—6) (A.1)
"Icosy/-—jcos¢ -acos(¢-6)=d=/¢($"+$—¢)

(a.2)

To find © it is assumed that the vortex is trailed parallel to
the local velocity vector, which is composed of two components:
a velocity _ﬂJZF? perpendicular to the blade due to the rotation
of the blade and a velocity parallel to the hub motion V =‘/u.jl.R

due to the hub motion.

From Figure 10 it can be seen that:

tan © = -/,u cos é
4€+//t sinjé

This set of Egs. (A.l), (A.2), and (A.3) can be combined into

(A.3)

one equation:

/l(lsin;£+/i) (4’+$—¢) —VI/Lcos $L+/u,[cos¢
+1-? sin (P-4 =0 (a.4)

which can be solved for ¢’on a digital computer by a Newton-
Raphson iteration. However, there are many solutions over the
intervals of interest (e.g., % = 0 ———>»—47) and finding all
the solutions in such an interval takes a considerable amount of

time.
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Having solved Eq. (A.4) for ¢ one can now solve EJ.

(A.3) for & and the Eg. (A.l) for a.

e=tan_l (—ucosgﬂ )

j-*-'/lsin¢
V¥ sin (// —J sin)¢

a= { sin (¢-6

2. Single Infinite Vortex

a. Lifting Line

To calculate the downwash P the following equation from

Appendix B may be used:

cos & + cos R
N /

W =

For an infinite straight line vortex oC=/6 = 0. From
Figure 1ll:

h2=22+a2 ’ P=—Wcos$
- 2a

22 +a2

cos § = a/h, P =

Where the downwash P is, the induced velocity component perpendi-
cular to the tip path plane (TPP), and z, the nondimensional
displacement of the vortex below the TPP, is given by (for a rigid

wake) :



b
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Z2 = 7\(¢+5 —¢)

For the near wake case the vortex line is only half-

infinite, hence &= 0 but/g;é 0. From Figure 12:

B=T/2 -e ,h=(£—7)cose

1 + sin@©

(1—’7) cos &

Note that z = 0 here, and hence P = W.

b. Lifting Surface

In the Appendix of Reference 1, a lifting surface

theory is developed. The induced velocity is written as:

A
W = '\r(x)=—3— Z—-—cosne
:

where x = b cos@ 1is the chordwise coordinate. It is then

shown that:

L =woblz S (FmSr)b + 3 (43R b
LV
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I,

If HI ) 3% and HL‘ are neglected compared to Al
and 2!& then:
it

L_ ‘ﬁ}ol> [ % ) + \ffl‘}
Noting that ] = ——ﬁg then:

Wy
T W g TR

Also:

V=7J2?cne + 1R s'ml//

Hence:

YA.

| = -ﬂ—/, [ b o W (Wzﬂﬁcos@’rﬂR 5,”14/)}40]‘

Figure 13 shows the type of error involved in neglecting ﬁh )
%%l and F]l . This figure is the result of calculating the
downwash at seven chordwise stations, performing a chordwise
harmonic analysis on the result, and using the resulting coef-

ficients to calculate L.

AO is simply the average value of the downwash as a

function of x at any 90' and '7 . Thus AO can be found by

integrating the downwash over the chord and dividing by the chord.

—— s —— Ot A "t 7 . ~ - o~



‘p‘
7}

13
3b/g
) /‘ 200 dx
fo = Z0b/R Jo2 4 atm
2%

From Figure 14:

a0 = —at X sin A

where: N = ¢—v¢~9

Since the chord is small relative to the rate of change of z,
one can assume that z 1is constant over the chord. Substituting

and integrating:

______/___..__ (ffzf- {a*~17a {"Ké‘)sinu + 7(%)2'5'"210 )
ﬁo = 2(bR) sinv /ﬁ" 4_21+ 4a?'+4»o.(%) Sind) + (%)zs'mz&)

Noting that: A) = ?{_,%.-e ) %—% = .../

M, M, I 3,

— ewwe SR

W T W Y 3
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' ) ’ Cos A) #zz} ¢az~/2¢&é)sind+7é)zs;”z&;)
R lreevrs faE)sinn + ()" sin"s

N

|
(TRl A 2o 1 )
- L\ £2% =122 (B) sinut (6] s
L (*\Z a (*E‘)cosu + 18 (f} S$in4 cos»o) - (4’21++4a2+4_a (-“5 sinv +(—E—)st'm"o

,(Z (—%‘)zsin«) cosA + 4~a (‘%) Cos»u):’ )

For the near wake it is assumed that the vortex originates

at the same chordwise coordinate x as the point where downwash

is calculated. From Figure 15:
- I = _(f-
oL =0 }/3~ > 1 6 /mw{ a (4 7) cos &

Thus for the near wake case, use the far wake equation multiplied

by /"‘ Z;ng and with a= -—a.,Y) cos © -

3. Double Infinite Vortex

For this case, the downwash (P) is calculated in two

parts (P+ and P_ ), one for each vortex. From Figure 16:
Ajsin(¢-$¢)"/{8-'"¢ Y _\/7[)_7_[_’9'_4)
Leos(p-§4)iusp -desp 17+ 7 7 “

'['An O+:—‘

jﬁn% - ,psfn(Cf-!— S¢> _ T -
Bn 4 = Y=Ttg4u.-9 .
V- lus?{ +/lsf£ '/[COS(S‘+S¢) / *
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From Figure 16 it can be seen that h = a cos X:i: and

04+=T——-4>~/U+_ )/g+=0)oi_=o)/ﬁ,=75—d_.
—ﬁ CGSY+[i~Cos<¢~ 'Q‘_)] P~’ACOSY—[\+COS(¢"O-)
2t b e, 1T Bty

For far wake P = P+ + P and for near wake P = P+.
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APPENDIX B
THE INDUCED VELOCITY OF A VORTEX SEGMENT

To calculate induced velocities, use may be made at the
following relationship for a straight line vortex segment, derived

from the Biot Savart Law (Reference 6).

X

n
W 24;]* (Cos o(+Cos/3>

where W¥ is the dimensional induced velocity at point P,,z '
perpendicular to the plane determined by the vortex segment
and point P ’ [1 is the dimensional circulation of the vortex
segment, h* is the perpendicular distance from the vortex segment
to point R7'and dland/ﬁ are the angles between lines drawn from
the ends of the vortex segment to point P.,7 and the vortex

segment (see Figure 17). Now define the nondimensional quan-

tit\,i;s; W/ () ed h= W /R

where R is the dimensional rotor radius. Therefore:

Cos L 4 Cos
W = , i
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APPENDIX C
FINITE STRAIGHT LINE (FSL)

Consider calculating the induced velocity at point P7
and time tv . Point P7 is on the quarter chord line and at
a spanwise distance from the rotor hub VIR on the blade at az-
imuth angle 9ban:time f7 . To calculate the induced velocity
due to the entire wake, consider a general vortex element at
point P, . which is inducing part of the total induced velocity
at P.? - Let t, be the time at which the element of vorticity at 11
was trailed. Then at time ty point 3! was on the quarter
choré line and AZ a spanwise distance from the rotor hub AR
on the blade at azimuth angle ¢ . Let the azimuth angle between
the blade on which P.,z is located and the blade which trailed the
element of vorticity at Fl at any instant be ¥ . Hence, in
the time from tl until t,7 the rotor hub will move a nondimen-
sional distance d =/1($1/+ < - .é), where/(=V/J7,R is the
advance ratio. Similarly, the vertical displacement, perpendi-
cular to the tip path plane (TPP), of point RL relative to
point P.,( at time t‘.z will be, nondimensionally, -Z=)\((P+S - ¢)

where 7\ is the nondimensional mean inflow through the rotor.

Define a right-handed axis system with origin at P..2 .
The y-azis and —; are parallel to and in the opposite direction
from the line of rotor hub motion, and axe in the TPP. The
X-axis and -; are perpendicular to the y-axis and are in the TPP.
-

The z-axis and k are perpendicular to the TPP and point downward

- 2 = .
(Figure 24). Let i, j, and k be unit vectors.
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For convenient calculation the spiral wake is now
broken up into a series of straight line segments of equal
A¢ (typically 150), where Aq‘ refers to the difference in
azimuth angle ¢ between the ends of the vortex segment. 12 is
defined to be at the end of the vortex segment nearest R7 along
the spiral. Define the coordinates of the ends of a typical
vortex segment to be (x, y, z) and (Xl'yl'zl) (Figure 18). From

Figure 19 and recalling the values of z and d:

ij.s;n;é-v]s'my/ , Xl.—zjg}n (?S«Agﬂ)-—v,s'mﬁ[/
V=deosg - fenclf + p ($#5 =)
Y: ":jcos (¢—A¢) —jcosfé V/%%X"&’/—Af‘)

z=WVts-¢)-alt-y) 2 =)(Prs-p+ad) - a. (-]

where ag is the coning angle.

From Appendix B, the nondimensional induced velocity is:

Cos o 4 Cos

Define @ and b as vectors from P7 to the ends of the vortex segment

N Y - .
and ¢ = a - b, then from Figure 18:
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CosS o = 13‘\6‘ )COS/B-—- )—g\\é;.
)R D)
h= 12 sma = |2] 13112\

A
Define n as the unit vector parallel to the induced velocity at

P,,1 , then from Figure 18:

1
/"\
=11
/Ts
1372
Copre”
|
e
o
Si
=
o

1= A
>
o1

W= W7 = Ky Y \
|2 X (-3)]

| —

From Figure 18:

a=xtHyytezk

Substituting and reducing results in:
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r \ 2 KA
XEY 2y XX, -yy, 22, Keyre - xx-Vy, -2,

= + .
_ N yiy 22 A Xyt 2’
] Nzi-ve)* ¢ (x,2 - x2,)° (xy, - Xy

£l
]

(‘ifl"%z)f + (x2 —xz)“)’ (XY, - ,\f)k ]

which can easily be programmed for rapid computation on ga digital

computer.

Now the ﬁ for the various segments of wake must be summed
over ¢ between some limits. The upper limit is the upper end of
the spiral vortex at timet7 . After several turns of the spiral
Pl becomes so far away from P7 that it induces a negligible
velocity at P and can be neglected. A typical lower limit is
two turns of the spiral (720O in ¢) below the upper limit. After
summing over ¢ summing: over { (for two trailing vortices
[ = 1.0, .5, typically) and ® (for 4 blades $= 0, /2, W, and
3T /2) gives the nondimensional induced velocity at PY due to a

rigid trailing wake of constant circulation.
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FIG. 10 DERIVATION OF 8
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VORTEX

FIG. 12 SINGLE INFINITE VORTEX,NEAR
WAKE GEOMETRY
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FIG.13 LIFTING SURFACE APPROXIMATION. 4 BLADES p=0.2,
X=0.025, A¢=7.5°, n=0.85
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VORTEX SEGMENT

FIG. I7 VORTEX SEGMENT GEOMETRY
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